土木在线论坛 \ 暖通空调 \ 动力燃气系统 \ [标准]城镇燃气设计规范2006(条文说明)

[标准]城镇燃气设计规范2006(条文说明)

发布于:2007-09-07 06:43:07 来自:暖通空调/动力燃气系统 [复制转发]
论坛上好象没有,我把燃规在线发来共享,

全部回复(29 )

只看楼主 我来说两句
  • ltpfff
    ltpfff 沙发
    煤气换向依次向后轮换输气之优点:

    1)保证在第Ⅰ、Ⅱ箱内保持足够的反应条件;

    2)煤气将渐渐冷却,由于后面箱中氧仍能发挥作用使硫化铁能良好再生;

    3)可有效避免脱硫剂着火的危险。

    上海杨树浦煤气厂、北京751厂等均是向后轮换输气的,操作情况良好。

    当采用赤泥时,虽然赤泥干法脱硫剂具有含活性氧化铁量较藻铁矿高,通过脱硫剂的气速可以较藻铁矿大,与脱硫剂的接触时间可以缩短以及通过脱硫剂的阻力降比藻铁矿的小等优点,但由于该脱硫剂在国内使用的不少厂仅仅停留在能较好替换原藻铁矿等,而该脱硫剂对一些生产参数尚需做进一步的工作。本规定赤泥脱硫剂仍可按公式(5.11.3)设计。但由于其密度为0.3~0.5t/m3会造成计算后需用脱硫剂体积增加,这与实际情况有差异,因此在设计中可取脱硫剂厚度的上限、停留时间的下限从而提高箱内气速。

    5.11.4 干法脱硫箱有高架式、半地下式及地下式等形式。高架式便于脱硫剂的卸料也可用机械设备较半地下式及地下式均优越。本条规定宜采用高架式。

    5.11.5 塔式的干法脱硫设备同样宜用机械设备装卸,从而减少劳动强度和改善工人劳动环境。

    5.11.6 为安全生产,干法脱硫箱应有安全泄压装置,其安装位置为:

    1 在箱前或箱后的煤气管道上安装水封筒;

    2 在箱的顶盖上设泄压安全阀。

    5.11.7 干法脱硫工段应有配制、堆放脱硫剂的场地。除此之外该场地还应考虑脱硫剂再生时翻晒用的场地。一般该场地宜为干箱总面积的2~3倍。

    5.11.8 当采用脱硫剂箱内再生时,根据煤气中硫化氢的含量来确定煤气中氧的增加量,但从安全角度出发,一般出箱煤气中含氧量不应大于2%(体积分数)。

    5.12 一氧化碳的变换

    5.12.1 一氧化碳与水蒸气在催化剂的作用下发生变换反应生成氢和二氧化碳的过程很早就用于合成氨工业,以后并用于制氢。在合成甲醇等生产中用来调整水煤气中一氧化碳和氢的比例,以满足工艺上的要求。多年来各国为了降低城市煤气中的一氧化碳的含量,也采用了一氧化碳变换装置,在降低城市煤气的毒性方

    面得到了广泛的应用,并取得了良好的效果。煤气中一氧化碳与水蒸气的变换反应可用下式表式:

    CO+H2O=CO2+H2+热量

    5.12.2 全部变换工艺是指将全部煤气引入一氧化碳变换工段进行处理,而部分变换工艺是指将一部分煤气引人一氧化碳变换工段进行一氧化碳变换处理,选择全部变换或部分变换工艺主要根据煤气中一氧化碳的含量确定,无论采用哪种工艺,其目的都是为降低煤气中一氧化碳的含量,使其达到规范规定的浓度标准。根据不同的催化剂的工艺条件,煤气中的一氧化碳含量可以降低至2%~4%或0.2%~0.4%。由于一氧化碳变换工艺是一个耗能降热值的工艺过程,因此可以选择将一部分煤气进行一氧化碳变换后与未进行一氧化碳变换的人工煤气进行掺混,使煤气中一氧化碳含量达到标准要求,采取部分变换工艺的主要目的是为了减少能耗,降低成本,减少煤气热值的降低。

    5.12.3 一氧化碳变换工艺有常压和加压两种工艺流程,选择何种工艺流程主要是根据煤气生产工艺来确定,当制气工艺为常压生产工艺时,一氧化碳变换工艺宜采用常压变换流程,当制气工艺为加压气化工艺时宜考虑采用加压变换流程。

    5.12.4 人工煤气中各种杂质较多,如不进行脱除硫化氢,焦油等净化处理,将会造成变换炉中的触媒污染和中毒,影响变换效果。触媒是一氧化碳变换反应的催化剂,它对硫化氢较为敏感,如果煤气中硫化氢含量过高将造成触媒中毒;如果煤气中焦油含量高,将会污染触媒的表面,从而降低反应效率。

    5.12.5 由于一氧化碳变换的反应温度较高,最高可达520℃以上,接近或高于煤气的理论着火温度(例如氢的着火温度为400℃,一氧化碳的着火温度为605℃,甲烷的着火温度为540℃),因此在有氧气的情况下就会首先引起煤气中的氢气发生燃烧,进而引燃煤气,如果局部达到爆炸极限还会引起爆炸。严格控制氧含量的目的主要是为安全生产考虑。

    5.12.9 一氧化碳常压变换工艺流程中,热水塔通常都被叠装在饱和塔之上,热水靠自身位差经水加热器进入饱和塔,饱和塔的出水由水泵压回热水塔。

    而在一氧化碳加压变换的工艺流程中,饱和塔叠装于热水塔之上,饱和塔出水自流人热水塔,加热后的热水用泵压入水加热器后再进入饱和塔。

    5.12.10 一氧化碳变换工段热水用量较大,设计时应充分考虑节水、节能及环境保护的需要,采用封闭循环系统减少用水量,节省动力消耗,减少污水排放。

    5.12.12 变换系统中设置了饱和热水塔,利用水为媒介将变换气的余热传递给煤气。因此在饱和塔与热水塔之间循环使用的水量必须保证能最大限度地传递热量。若水量太小则不能保证将变换气的热量最大限度地吸收下来,或最大限度地把热量传给煤气。在满足喷淋密度的情况下还要控制循环水量不能过大,水量偏大时,饱和塔推动力大,对饱和塔有利,而热水塔推动力小,对热水塔不利。同样水量偏小时,饱和塔推动力小对饱和塔不利,热水塔推动力大对热水塔有利,但两种情况都不利于生产,因此必须选择一合适水量,使饱和塔和热水塔都在合理范围之内。

    对于填料塔,每1000m3煤气约需循环水量15m3,对于穿流式波纹塔,常压变换操作下循环热水流量是气体重量的13~15倍。在加压变换操作下每1000m3煤气需循环水量10m3。

    5.12.14 一氧化碳变换反应是放热反应,随着反应的进行,变换气的温度不断升高,它将使反应温度偏离最适宜的反应温度,甚至损坏催化剂,因此在设计中应采用分段变换的方法,在反应中间移走部分热量,使反应尽可能在接近最适宜的温度下进行。变换炉中的催化剂一般可设置2~3层,故通常称之为两段变换或三段变换。在变换炉上部的第一段一般是在较高的温度下进行近乎绝热的变换反应,然后对一段变换气进行中间冷却,再进入第二、三段,在较低温度下进行变换反应。这样既提高了反应速度也提高了催化剂的利用率。

    5.13 煤气脱水

    5.13.1 煤气脱水可以采用冷冻法、吸附法、化学反应等方法进行,目前国内外在人工煤气生产领域中,普遍采用冷冻法脱除煤气中的水分。采用吸附法脱水需要增加相当多的吸附剂;采用化学方法脱水需要增加化学反应剂。冷冻法脱水有工艺流程简单、成本低、无污染、处理量大等特点。

    5.13.2 煤气脱水工段一般情况下应设在压送工段后,主要有三个方面原因:一是考虑脱水工段的换热设备多,因此系统阻力损失较大,放在压送工段后可以满足系统阻力要求;二是脱水效果好,煤气压力提高后其所含水分的饱和蒸汽分压相应提高,有利于冷冻脱水;三是煤气加压后体积变小,使煤气脱水设备的体积都相应的减小。

    5.13.5 煤气脱水的技术指标主要是控制煤气的露点温度,脱水的目的是为了降低煤气的露点温度,当环境温度高于煤气的露点温度时,煤气不会有水析出。当环境温度低于煤气的露点温度时煤气中的水分就会部分冷凝出来。由于煤气输配过程中,用于输送煤气的中、低压管网的平均覆土深度一般为地下1m左右,根据多年的生产运行情况看,在环境温度比煤气露点温度高3~5℃时,煤气中的水分不会析出,因此将煤气的露点温度控制在低于最冷月地下平均地温3℃以上时就能保证煤气在输送过程中管道中不会有水析出。

    5.13.6 由于煤气中的焦油、灰尘、萘等杂质在生产操作过程中会析出,粘结在换热设备的内壁上,从而影响换热效率,特别是冷却煤气的换热器。由于是采用冷水间接冷却煤气的工艺,当煤气中的萘遇冷时会在换热器的管壁析出,煤焦油及灰尘也会在管壁上逐渐地粘结,影响换热效果,因此需要定期清理这些换热器。国内现有清洗换热器的方法是用蒸汽吹扫,同时也采用人工清理的方式将换热器内的污垢除去。所以在进行换热器的结构设计时应考虑其内部结构便于清理及拆装。

    5.13.7 冷冻法煤气脱水工段的主要动力消耗是制冷机组的电力消耗,由于城镇煤气供应量具有高、低峰值,选用变频制冷机组可以适应这种高低峰变化要求,并大大节省动力消耗,降低生产成本。

    5.14 放散和液封

    5.14.2 设备和管道上的放散管管口高度应考虑放散出有害气体对操作人员有危害及对环境有污染。《工业企业煤气安全规程》 GB 6222中第4.3.1.2条中规定放散管管口高度必须高出煤气管道、设备和走台4m并且离地面不小于10m。本规定考虑对一些小管径的放散管高出4m后其稳定性较差,因此本规定中按管径给予分类,公称直径大于150mm的放散管定为高出4m,不大于150mm的放散管按惯例设计定为2.5m而GB 6222规定离地不小于10m,所以在本规定中就不作硬性规定,应视现场具体情况而定,原则是考虑人员及环境的安全。

    5.14.3 煤气系统中液封槽高度在《工业企业煤气安全规程》 GB 6222中第4.2.2.1条规定水封的有效高度为煤气计算压力加500mm。本规定中根据气源厂内各工段情况做出的具体规定,其中第2款硫铵工段由于满流槽中是酸液,其密度大,液封高度相应较小,而且酸液漏出会造成腐蚀。因此该液封高度按习惯做法定为鼓风机的全压。

    5.14.4 煤气系统液封槽、溶解槽等需补水的容器,在设计时都应注意其补水口严禁与供水管道直接相连,防止在操作失误、设备失灵或特殊情况下造成倒流,污染供水系统。

    煤气厂供水系统被污染在国内已经发生过。由于煤气厂内许多化学物质皆为有毒物质,一旦发生水质污染,极易造成严重后果。
    2007-09-07 07:26:07

    回复 举报
    赞同0
  • ltpfff
    ltpfff 板凳
    干法脱硫剂量的计算公式

    干法脱硫剂量的计算公式较多,可供参考的有如下四个公式:

    1)米特公式:

    一组四个脱硫箱,每箱内脱硫剂3′6″~4′,每个箱最小截面积是:

    当H2S量500~700格令/100立方英尺时为0.5平方英尺/(1000立方英尺·d)当H2S量小于200格令/100立方英尺时为0.4平方英尺/(1000立方英尺·d)注:1格令/100立方英尺=22.9mg/m3

    2)爱佛里公式








    R=25~30(箱式) R>30(塔式)

    3)斯蒂尔公式:








    式中 A——煤气经过一组串联箱中任一箱内截面积(平方英尺);

    G——需要脱硫的最大煤气量(标准立方英尺/时);

    S——进口煤气中H2S含量的校正系数;

    当煤气中H2S含量为4.5~23g/m3时s值为480~720;

    D——气体通过干箱组的氧化铁脱硫剂总深度(英尺);

    C——系数,对2、3、4个箱时分别为4、8、10。

    4)密尔本公式:








    式中V——每小时处理1000m3煤气所需脱硫剂(m3);

    Cs——煤气中H2S含量(体积%);

    f——新脱硫剂中活性三氧化二铁重量含量(%);

    ρ——新脱硫剂的密度(t/m3)。

    以上四个公式比较,米特和爱佛里公式较粗糙,而且不考虑煤气中H2S含量的变化,故不宜推荐,斯蒂尔公式虽在S校正系数中考虑了H2S的变化,但S值仅是H2S在4.5~23g/m3间才适用,对于法脱硫箱常用的低H2s值时就不能适用了,经过一系列公式演算和实际情况对照认为密尔本公式较为适宜。

    按《焦炉气及其他可燃气体的脱硫》一书说明,密尔本公式只适用于H2S含量小于0.8%体积比(相当于12g/m3左右),这符合一般人工煤气的范围。

    5 脱硫箱的设计温度。根据一般资料介绍,干箱的煤气出口温度宜在28~30℃,温度过低时将使硫化反应速度缓慢,煤气中的水分大量冷凝造成脱硫剂过湿,煤气与氧化铁接触不良,脱硫效率明显下降。这里规定了“25~35℃”的操作温度,即说明在设计时对于寒冷地区的干箱需要考虑保温。至于应采取哪些保温措施则需视具体情况决定,不作硬性规定。

    规定“每个干箱宜设计蒸汽注入装置”是在必要时可以增加脱硫剂的水分和保持脱硫反应温度,有利于提高和保持脱硫效率。

    6 规定每组干法脱硫设备宜设置一个备用箱是从实际出发的,考虑到我国幅员辽阔,生产条件各不相同。干法脱硫剂的配制、再生的时问也各不相同,为保证顺利生产,应设置备用箱,以做换箱时替代用。

    条文中规定了连接每个脱硫箱间的煤气管道的布置应能依次向后轮换输气。向后轮换输气是指Ⅰ、Ⅱ、Ⅲ、Ⅳ→Ⅳ、Ⅰ、Ⅱ、Ⅲ→Ⅲ、Ⅳ、工、Ⅱ→Ⅱ、Ⅲ、Ⅳ、Ⅰ(Ⅰ、Ⅱ、Ⅲ、Ⅳ代表干箱之号)。

    2007-09-07 07:26:07

    回复 举报
    赞同0
加载更多
这个家伙什么也没有留下。。。

动力燃气系统

返回版块

4.21 万条内容 · 191 人订阅

猜你喜欢

阅读下一篇

高手来,室外燃气立管与进风井的水平设置距离

高手来,室外燃气立管与进风井的水平设置距离是多少

回帖成功

经验值 +10