土木在线论坛 \ 给排水工程 \ 中水处理回用 \ 厌氧氨氧化:一个关于时间和耐心的故事- 从43年前谈起

厌氧氨氧化:一个关于时间和耐心的故事- 从43年前谈起

发布于:2022-07-26 09:39:26 来自:给排水工程/中水处理回用 0 13 [复制转发]
本文转载于IWA,   2020-08-04

在1986年之前,人们都不相信有可在厌氧环境下“氧化”氨氮的细菌。一个荷兰生物工程师和一个微生物教授的偶遇改变了一切。到了1999年7月,这位微生物学家连同其他几位学者,在《Nature》期刊上宣布了一个重大发现:“厌氧氨氧化”菌属于浮霉菌门。在日后关于anammox的文章里,这个人的名字会被反复引用,他的名字叫Gijs Kuenen。
Gijs Kuenen教授 | 图源: Michel Mees
如果你不知道Gijs Kuenen是谁的话,那说明你对厌氧氨氧化的历史还知之甚少。如果说谁最有资格为厌氧氨氧化作传,那可能是非Gijs Kuenen教授莫属。幸运的是,Kuenen教授最近还真的将过去40年厌氧氨氧化史好好地梳理了一遍,并发表在2020年第二期的《Environmental Microbiology》上,题为《Anammox and Beyond》。今天在本期微信推送里,我们为大家整理一下关于厌氧氨氧化的那些事。



从硫细菌说起      


1940年12月9日,Gijs Kuenen出生于荷兰阿姆斯特丹西边的小城Heemstede。1972年,Kuenen教授在格罗宁根大学获得微生物学博士学位。毕业后他在美国洛杉矶和荷兰格罗宁根辗转了几年,随后在1980年来到代尔夫特,成为了荷兰代尔夫特理工大学TU Delft的第四任微生物教授。前三人都是代尔夫特理工的传奇人物,包括Martinus Beijerinck、Albert Kluyver和Cornelis van Niel。

Kuenen教授说,每次回想,都让他愈发感觉微生物界各种人和事之间奇妙的联系。他说关于anammox的故事可以从他在格罗宁根大学读本科的时候说起。当时这门课的授课老师是Hans Veldkamp教授(1923-2002),Veldkamp的导师则是Albert Kluyer (圈子的传承)。在为期六周的微生物课里,他学会了如何对多种微生物和代谢类型进行富集培养,而这种方法正是TU Delft首任微生物教授Martinus Beijerinck发明的。后来Veldkamp教授则成为了Kuenen教授博士学位的导师。他的博士论文是关于两种硫氧化菌(SOB)的比较。在此后很长的一段时间里,他的研究都是围绕SOB展开的。在1980年他回到Delft之后,他开始寻求SOB在工业上的应用。巧合的是,当时荷兰瓦赫宁根大学的Gatze Lettinga教授正在研究污水的厌氧处理技术。两位教授联合本地一家叫Paques的小公司,成功地开发了生物脱硫工艺,去除污水中的硫化氢,并回收单质硫。Paques公司后来也将这项工艺技术商业化,取名THIOPAQ。取名者正是Kuenen和Lettinga联合培养的博士生Cees Buisman,后来他也成为了瓦大环境系的教授。关于硫细菌更多的故事,大家可以回看IWA微信公众号此前的推送文章 生物脱硫技术的前世今生



在大学当教授之余,当时Kuenen每周会抽几小时给一家叫Gist-Brocades (GB)的生物公司当咨询顾问。1987年,GB公司请他为公司一套新的污水厌氧处理系统的硫循环做技术指导。这套系统本来是要用来解决工厂产生的臭气问题的。但在此期间,GB公司的运行人员却发现系统中一个奇怪现象—— 中试运行数月后,反硝化反应池的氨氮浓度下降了,硝酸盐也减少了,还有明显的氮气产出 。“书里不是说氨氮只能在好氧条件才会转化吗?反硝化池的氨氮浓度应该保持不变才对啊?”时任GB公司研究员的 Arnold Mulder 对此十分不解。他通过领导找到了 Kuenen教授进行咨询。


图:   1984年的Gist Brocades 青霉素制药厂 | 图源: ANP


Mulder先生的发现唤起了Kuenen教授尘封了10年的记忆,他告诉Mulder:“我10年前就看过一篇paper报道过这个现象。” Kuenen教授指的是1977年67岁的奥地利理论化学家Engelbert Broda写的题为《Two kinds of lithotrophs missing in Nature》(德语原题《Zeitschrift für allgemeine Mikrobiologie》)的文章。此文在当时学术圈可谓一声惊雷。当时37岁的Kuenen也拜读了这篇文章,并和同事们展开讨论,但他们大都认为氨是不可能在厌氧条件下被氧化的。

两人开始了进一步的研究。很有商业意识的Arnold很快给这个潜在工艺起了一个朗朗上口的名字—— ANAMMOX(厌氧氨氧化 。然而,他们初期的尝试并不算成功:他无法通过传统的培养 富集法 提取出这个反应发生的微生物,因此无法确定这是一个自发的化学反应,还是一个生物反应。 

Kuenen此时又想起了奥地利人Broda的文章里列出的两条热力学方程式:

Kuenen教授提议用15-N同位素示踪技术来确认氮气是否来自氨氮,并将此重任交给了他的一位女硕士生——Astrid van de Graaf。Astrid在实验室用 流化床反应器 做实验,成功发现了14,15-N 2 。这个发现固然让人激动万分,但他们还需要更多的证据来充分印证这个反应的生物属性。幸运的是,Kuenen教授向荷兰技术基金会(STW)申请到资金为Astrid专门开设一个博士项目,确保后者可以安心将研究进行下去。

在证明生物反应的存在后,Astrid接下来要继续用15-N示踪标记法识别各种中间物和最终产物,并尝试富集反应的微生物。这项工作的挑战巨大,别的不说,单考虑到Anammox菌超慢的生长速率(约0.001-0.002/h),Astrid的工作量就可想而知。她的勇气也值得钦佩。幸好皇天不负有心人,在一次偶然的尝试中,他们发现anammox反应的基质是亚硝酸盐,而不是硝酸盐,而且部分亚硝酸盐会转化成硝态氮用于固定二氧化碳。


第一个20年      


Kuenen教授在1980年入职TU Delft后的20年可以算是厌氧氨氧化的第一个20年。这个阶段以验证anammox为焦点,在热力学方程式为指导,最终通过富集培养、流化床反应器、同位素示踪标记等手段证明了anammox的存在,并描绘了基本的代谢路径。

Astrid在完成她的博士学位后,并没有选择继续anammox的研究,1994年,在Delft当了6年研究员之后,她选择到荷兰科学中心NEMO做科普内容方面的工作。Kuenen教授将下一个挑战交给了Marc Strous博士,让他对anammox菌进行富集提纯。利用SBR反应器,Marc成功地可重复地培养高产量的anammox菌,纯度提高至70%。

有了高纯度的微生物,Kuenen教授的团队可以做更多分析了。他找到澳洲昆士兰大学的分子生物学教授John Fuerst帮忙确认目标微生物。借助电子显微镜的近距离观察,他们发现这些细胞有一个奇怪的、靠膜隔开的内室。这可是一个大惊喜!要知道,只有更复杂(真核)细胞才有这种隔室,就像人类细胞拥有的细胞器(organelles)。他们将这个东西取名厌氧氨氧化体(anammoxosome)。这些细胞器负责执行特定的生物学功能,对细胞组分、代谢过程和信号传导途径起时空控制作用。简单的原核细胞和细菌都没有细胞器。目前科学家只知道浮霉菌(Planctomycetes)具有这种结构,因此研究团队推断anammox菌属于该门。


图: anammox细胞的透射电子显微镜照片和截面手绘图(比例尺0.2μm)


话说浮霉菌非常奇特,因为它同时含有细菌、真菌和古菌三大菌属的特性,因此有些人认为该菌在早期可能跟三大菌属是同一个祖先。只是DNA的研究将它们归在了细菌属一类。可以说,浮霉菌的出现模糊了细菌的定义。在此之前,没有人将浮霉菌门跟厌氧氨氧化拉上关系,但Kuenen教授的团队用氨氮和亚硝态氮培养出了这种细胞,底物也随反应过程消失。这也从侧面说明anammox菌的特别之处。

这个说个题外话:他们将这个第一次测序分析的anammox菌取名 Candidatus  Brocadia anammoxidans:anammoxidans表示其独特的生化特性,Brocadia既表示了这些细菌的发现地(Brocades),另外也因为这些鲜红色的细菌让研究者联想到明艳的织锦。


第二个20年      


“21世纪是生物的世纪。”这句话虽然更多被拿来揶揄,但在我们看来,到本世纪再来看,它所表达的可能就变成真知了。就以anammox为例,在2000-2020年之间,关于它的许多新发现都有赖于生物技术的进步。

16S rRNA基因测序的普及帮助科学家对更多的anammox菌进行命名。例如Mike Jetten和Michael Wagner就说服法国基因测序中心Genoscope帮Kuenen团队在一个流化床反应器的富集物进行DNA,并找出了新的菌种,并以Kuenen的姓命名( Candidatus  Kuenenia stuttgartiensis)。测序结果也显示基因组相当大(4.27 Mb),还含有大量细胞色素基因,这也解释了anammox菌呈红色的原因。

这也开启了anammox菌的宏基因组分析时代。随着DNA测序技术的发展,Kuenenia菌的基因组通过Mike Jetten教授带领的团队得到进一步完善。Jetten团队开展大量的生物化学和酶学研究,在anammox的代谢路径方面取得了重大突破。例如通过结构分析发现anammoxosome是能量转化的场所,又例如发现一氧化氮才是许多anammox菌的反应中间物(而不是羟胺)。


图:   Jetten团队总结的anammoxosome的能量代谢流程图


可以说,21世纪以来,厌氧氨氧化研究已经遍及各个方面,从基因组学、蛋白组学、环境和生态微生物学。值得一提的是,虽然实验和分析手段在过去20多年有了很大改进,不过时至今日,科学家依然无法得到纯种的anammox细菌,这也是为什么这些菌目前都以 Candidatus 命名。Kuenen表示希望他的学生以及学生的学生们可以早日得到单菌株,这样就可以摘掉 Candidatus 的前缀


没有终点的探索      
之前我们提到Mulder先生早在上世纪80年代末就为Anammox工艺注册了专利。但因为anammox菌超慢的生长速率,那个年代的人对anammox技术的前景并不看好,压根没有公司感兴趣!唯独Mark van Loosdrecht教授叫他的学生Udo van Dongen试着去搭一个两段式的反应系统,第一段将部分氨氮氧化成亚硝态氮,第二段是厌氧氨氧化流化床。实验结果成功打动了鹿特丹的Dokhaven污水厂。后者和TU Delft合作进行中试实验,处理厌氧消化池的高浓度氨氮出水。最后的结果如今大家都以知道——侧流厌氧氨氧化工艺已经成为很成熟的工艺。但可能不为人所知的是,Kuenen教授和Van Loosdrecht教授当时可是通过2年多的稳定运行才最终打动鹿特丹市所属的水委会,为这个工艺争取到了工程验证的机会。  
Kuenen教授在这篇12页的综述里,将学术界和工程界在1977到2020年里对厌氧氨氧化认知的变化都写了一遍。这是一个关于时间和耐心的故事。43年,说长不长,说短不短。但对于1972年博士毕业、2005年退休的Gijs Kuenen教授来说,厌氧氨氧化几乎贯穿了他的科研生涯。虽然硫氧化菌才是Kuenen教授的挚爱,但最后让他流芳百世的却是厌氧氨氧化菌(anammox第二个属Kuenenia就以他命名)。


Kuenen教授在文章最后说道:“对作者而言,这个故事就到此为止了。但欣慰的是,微生物学的奇妙旅程仍将继续。”这是一个没有终点的探索。相信在下一个20年,厌氧氨氧化的研究还有很多惊喜值得期待。

参考资料


Anammox and beyond, J. Gijs Kuenen, Environmental Microbiology (2020) 22(2), 525–536, https://doi.org/10.1111/1462-2920.14904

评论帖子
评论即可得
+1经验值
+10土木币

请先 登录,再参与讨论!

相关推荐
这个家伙什么也没有留下。。。

中水处理回用

返回版块

7366 条内容 · 107 人订阅

猜你喜欢

阅读下一篇

胡春华强调:坚持不懈推进华北地区地下水超采综合治理

  中共中央政治局委员、国务院副总理胡春华19日至20日在山东、河北考察水利工作并在河北衡水出席华北地区地下水超采综合治理工作协调小组第四次会议时强调,要坚决贯彻落实习近平总书记重要讲话精神,坚持不懈加强华北地区地下水超采综合治理,持续努力改善水生态环境。 胡春华先来到山东德州潘庄引黄工程和聊城南水北调东线穿黄工程、位山引黄工程,现场考察南水北调东线工程情况;随后到河北衡水徐沙闸和滏阳河,现场考察华北地区地下水超采综合治理情况。

请选择删除原因

回帖成功

经验值 +10